

Welcome to scimap’s documentation!

Contents:

	Introduction & Installation
	Motivation

	Installation

	Instrumentation and Beamline Support
	Bruker GADDS Diffractometers

	Bruker DaVinci Diffractometers

	APS Beamline 34-ID-E

	Accessing the Underlying Data
	Retrieving Common Representations

	Accessing the XRD Data Store and HDF File

	Refinement
	Fullprof

	GSAS-II

	Pawley

	Custom-Backends

	Materials

Indices and tables

	Index

	Module Index

	Search Page

Introduction & Installation

Motivation

Sorry, all out of motivation for today. Check back tomorrow.

Installation

The easiest way to run the development version is to use pip’s
developer mode (-e). First download the repository then install using
pip. Be aware that downloading the repository may take a while as the
test data can be very large.

$ git clone https://github.com/m3wolf/scimap.git
$ pip install -r scimap/requirements.txt
$ pip install -e scimap/

Now you should be able to import scimap in your python interpreter.

>>> import scimap

Running Tests

There is a set of unit tests and example data that accompany this
project. To run the tests, install the project as described above then
execute the test runner:

$ python scimap/tests/tests.py

and you should see something similar to:

...........x......x..x.xxx....xxxx.xxx.xxx......xx....x.........
--
Ran 64 tests in 31.432s

OK (expected failures=19)

Building Documentaion

The documentation for scimap is in the docs/ directory (the html
output is in docs/_build/html/). You will need the sphinx package
installed in order to build it:

$ pip install sphinx

After making changes to the documentation source files (eg
docs/intro.rst), re-build the documentation with:

$ cd scimap/docs/
$ make html

and view the result (eg docs/_build/html/intro.html). See the
reStructuredText [http://docutils.sourceforge.net/rst.html] documentation for more information on the formatting
of these .rst source files.

Instrumentation and Beamline Support

Bruker GADDS Diffractometers

Bruker has a software package that is shipped with “Series II”
diffractometers, called “GADDS”. While this software is being replaced
by an overhauled suite, it does have a scripting language that allows
for control of the instrument via scimap.

Use of Bruker GADDS system with scimap has three main components

Data Acquisition Script

This is where the user will prepare a “slm file” which can be run in
GADDS. It will instruct the instrument to trace out a desired path and
save both 2D and 1D diffractograms, as well as a .jpg of the camera’s
view.

scimap.write_gadds_script(qrange=(1, 5), sample_name='example',
 center=(1.32, -44.78), collimator=0.8)

This will create an example-frames/example.slm file that can
be run using GADDS. It will also create some supporting files that
will be used in the subsequent analysis.

Importing and Pre-Processing

Once the GADDS script has been run, the data can then be imported into
the HDF file for further analysis.

scimap.import_gadds_map(sample_name="example",
 directory="example_frames")

The value for sample_name should match that passed to the
write_gadds_script function called above. After calling this
function, the file example.h5 contains the imported data.

Analysis and Visualization

Coming soon.

Bruker DaVinci Diffractometers

As of this writing, the modern Bruker diffractometer family does not
support scripting and so mapping through scimap is not
possible. Support for individual Bruker BRML files is available
through scimap.XRDScan objects.

APS Beamline 34-ID-E

Scimap can import integrated data obtained from the 34-ID-E
microdiffraction beamline at the Advanced Photon Source. The
two-dimensional diffraction patterns must first be integrated to
one-dimensional patterns using the Fit2D application. Once
.chi files are prepared, they can be imported into scimap.

scimap.import_aps_34IDE_map(directory='example_frames/',
 wavelength=0.516, shape=(10, 10),
 step_size=0.10)

Where the wavelength is given in angstroms. Ideally, the .chi files
should use scattering lengths, but any files in 20 will be
automatically converted to scattering length (q).

Accessing the Underlying Data

Scimap tries to keep controller and presentation logic separate from
the underlying data; most of the methods on the XRDMap class
retrieve, display and/or store their data without the user’s
involvement. Given the complicated nature of scientific analysis, it
can sometimes become necessary to retrieve individual diffraction
patterns directly, or even to manipulate the data files directly;
scimap provides a mechanism for both cases.

Scimap uses HDF5 files to store all the mapping data. This provides
two benefits: 1) large datasets can still be analyzed even if they
don’t fit into main memory, and 2) the results of analysis can easily
be shared or published as one file with accompanying metadata. This
comes at the cost of increased time needed to write calculated data to
disk, rather than manipulating it in main memory.

Retrieving Common Representations

The following methods of the XRDMap class can be used to retrieve
a variety of packaged data.

	XRDMap.diffractogram: Get bulk-averaged diffraction data from all
positions.

	XRDMap.get_diffractogram: Get the diffraction data for a single
position.

Accessing the XRD Data Store and HDF File

It is possible to interact with the data as numerical arrays. The
XRDStore class provides an interface for accessing the defined
datasets. It can be retrieved throught the XRDMap().store()
method, or instantiated directly.

Warning

The XRDStore class should be used as a context manager
whenever possible. Failure to close the underlying HDF5
file, especially if using a writeable mode, is likely to
lead to file corruption.

xmap = XRDMap(...)
with xmap.store() as store:
 Is = store.intensities

In the above example, store.intensities gives the intensity
(photon counts) for each mapping position. The result will be an m x n
array where m is the number of mapping positions and n is the number
of angles/scattering vectors.

Refinement

Analyzing XRD mapping data requires some sort of refinement on each
mapping position. To accomplish this, the scimap provides the
scimap.xrd_map.refine_mapping_data() method. Once refined,
the results are stored in the HDF5 file and can be plotting using
scimap.xrd_map.plot_map(). Different approaches are activated
using the backend parameter. Many of the options, however, are
unfinished or imperfect:

Fullprof

Warning

This backend is functional but fragile.

This backend requires that FullProf [https://www.ill.eu/sites/fullprof/] refinement be installed and
available. The environmental variable $FULLPROF should point to
the installation directory.

mymap = scimap.XRDMap(...)
mymap.refine_mapping_data(backend="fullprof")

FullProf refinement creates temporary files that are cleaned up upon
successful refinement; if refinement fails, these files will be left
behind for troubleshooting.

GSAS-II

Error

This backend is not functional. GSAS-II is under active
development and if an API for Pawley refinement becomes
available, this backend may be updated.

Pawley

Warning

This backend is incomplete. Us at your own risk.

This backend is an implementation of simple Pawley refinement in
python.

Custom-Backends

If none of the available backends suit your needs, a custom backend
may be provided. The backend should be a subclass of
scimap.base_refinement.BaseRefinement. The
predict() method
should return the predicted intensities based on 2θ values, and a
number of methods should be overridden that accept 2θ values and
return refined parameters:

	goodness_of_fit()

	background()

	cell_params()

	scale_factor()

	broadenings()

	phase_fractions()

Sub-class the base refinement
class CustomRefinement(scimap.BaseRefinement):
 def phase_fractions(self, two_theta, intensities):
 # Do some calculations here
 ...
 # Override the other methods here
 ...

Now do the refinement
mymap = scimap.XRDMap(...)
mymap.refine_mapping_data(backend=CustomRefinement)

Materials

Having a proper understanding of the material structure being studied
is key to extracting usable information to map. The
scimap.XRDMap() class accepts a Phases=[] argument, which is a
list of scimap.Phase subclasses. The modules scimap.lmo and
scimap.nca include pre-defined phases for LiMn2O4 and LiNi0.8Co0.15Al0.05O2
respectively. Unless you happen to be working with these materials,
you will likely need to define some classes in order to perform a
thorough analysis.

from scimap import Phase, TetragonalUnitCell, XRDMap

Create a new class for our material
class Unobtainium(Phase):
 unit_cell = TetragonalUnitCell()
 # Define a list of hkl planes that define this strcture
 reflection_list = [
 Reflection('000', qrange=(2.75, 2.82)),
]

 # Now use our new class to analyze mapping data
 mymap = XRDMap(Phases=[Unobtainium])

Notice that the Unobtainium class is not instantiated before being
passed to XRDMap. This is because each mapping position gets a new
phase object that can be refined.

The reflection_list attribute describes the crystallographic
reflection planes for this crystal system. Each entry in this list is
a Reflection object. The first argument is a string with the hkl
indices. Additionally, a qrange argument (2-tuple) should be given
that gives the scattering vector (q) limits. Q can be calculated from
2θ values at a given wavelength λ:

\[q = \frac{4\pi}{\lambda} sin \Big(\frac{2\theta}{2}\Big)\]

As a shortcut, the function scimap.twotheta_to_q can also be used.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to scimap’s documentation!

 		
 Introduction & Installation

 		
 Motivation

 		
 Installation

 		
 Running Tests

 		
 Building Documentaion

 		
 Instrumentation and Beamline Support

 		
 Bruker GADDS Diffractometers

 		
 Data Acquisition Script

 		
 Importing and Pre-Processing

 		
 Analysis and Visualization

 		
 Bruker DaVinci Diffractometers

 		
 APS Beamline 34-ID-E

 		
 Accessing the Underlying Data

 		
 Retrieving Common Representations

 		
 Accessing the XRD Data Store and HDF File

 		
 Refinement

 		
 Fullprof

 		
 GSAS-II

 		
 Pawley

 		
 Custom-Backends

 		
 Materials

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

