
scimap Documentation
Release 0.2

Mark Wolf

Jul 20, 2021

Contents:

1 Introduction & Installation 1
1.1 Motivation . 1
1.2 Installation . 1

2 Instrumentation and Beamline Support 3
2.1 Bruker GADDS Diffractometers . 3
2.2 Bruker DaVinci Diffractometers . 4
2.3 APS Beamline 34-ID-E . 4

3 Accessing the Underlying Data 5
3.1 Retrieving Common Representations . 5
3.2 Accessing the XRD Data Store and HDF File . 5

4 Refinement 7
4.1 Fullprof . 7
4.2 GSAS-II . 7
4.3 Pawley . 8
4.4 Custom-Backends . 8

5 Materials 9

6 Indices and tables 11

i

ii

CHAPTER 1

Introduction & Installation

1.1 Motivation

Sorry, all out of motivation for today. Check back tomorrow.

1.2 Installation

The easiest way to run the development version is to use pip’s developer mode (-e). First download the repository
then install using pip. Be aware that downloading the repository may take a while as the test data can be very large.

$ git clone https://github.com/m3wolf/scimap.git
$ pip install -r scimap/requirements.txt
$ pip install -e scimap/

Now you should be able to import scimap in your python interpreter.

>>> import scimap

1.2.1 Running Tests

There is a set of unit tests and example data that accompany this project. To run the tests, install the project as described
above then execute the test runner:

$ python scimap/tests/tests.py

and you should see something similar to:

...........x......x..x.xxx....xxxx.xxx.xxx......xx....x.........
--
Ran 64 tests in 31.432s

(continues on next page)

1

scimap Documentation, Release 0.2

(continued from previous page)

OK (expected failures=19)

1.2.2 Building Documentaion

The documentation for scimap is in the docs/ directory (the html output is in docs/_build/html/). You will
need the sphinx package installed in order to build it:

$ pip install sphinx

After making changes to the documentation source files (eg docs/intro.rst), re-build the documentation with:

$ cd scimap/docs/
$ make html

and view the result (eg docs/_build/html/intro.html). See the reStructuredText documentation for more
information on the formatting of these .rst source files.

2 Chapter 1. Introduction & Installation

http://docutils.sourceforge.net/rst.html

CHAPTER 2

Instrumentation and Beamline Support

2.1 Bruker GADDS Diffractometers

Bruker has a software package that is shipped with “Series II” diffractometers, called “GADDS”. While this software
is being replaced by an overhauled suite, it does have a scripting language that allows for control of the instrument via
scimap.

Use of Bruker GADDS system with scimap has three main components

2.1.1 Data Acquisition Script

This is where the user will prepare a “slm file” which can be run in GADDS. It will instruct the instrument to trace out
a desired path and save both 2D and 1D diffractograms, as well as a .jpg of the camera’s view.

scimap.write_gadds_script(qrange=(1, 5), sample_name='example',
center=(1.32, -44.78), collimator=0.8)

This will create an example-frames/example.slm file that can be run using GADDS. It will also create some
supporting files that will be used in the subsequent analysis.

2.1.2 Importing and Pre-Processing

Once the GADDS script has been run, the data can then be imported into the HDF file for further analysis.

scimap.import_gadds_map(sample_name="example",
directory="example_frames")

The value for sample_name should match that passed to the write_gadds_script function called above. After
calling this function, the file example.h5 contains the imported data.

3

scimap Documentation, Release 0.2

2.1.3 Analysis and Visualization

Coming soon.

2.2 Bruker DaVinci Diffractometers

As of this writing, the modern Bruker diffractometer family does not support scripting and so mapping through scimap
is not possible. Support for individual Bruker BRML files is available through scimap.XRDScan objects.

2.3 APS Beamline 34-ID-E

Scimap can import integrated data obtained from the 34-ID-E microdiffraction beamline at the Advanced Photon
Source. The two-dimensional diffraction patterns must first be integrated to one-dimensional patterns using the Fit2D
application. Once .chi files are prepared, they can be imported into scimap.

scimap.import_aps_34IDE_map(directory='example_frames/',
wavelength=0.516, shape=(10, 10),
step_size=0.10)

Where the wavelength is given in angstroms. Ideally, the .chi files should use scattering lengths, but any files in 20
will be automatically converted to scattering length (q).

4 Chapter 2. Instrumentation and Beamline Support

CHAPTER 3

Accessing the Underlying Data

Scimap tries to keep controller and presentation logic separate from the underlying data; most of the methods on the
XRDMap class retrieve, display and/or store their data without the user’s involvement. Given the complicated nature
of scientific analysis, it can sometimes become necessary to retrieve individual diffraction patterns directly, or even to
manipulate the data files directly; scimap provides a mechanism for both cases.

Scimap uses HDF5 files to store all the mapping data. This provides two benefits: 1) large datasets can still be analyzed
even if they don’t fit into main memory, and 2) the results of analysis can easily be shared or published as one file with
accompanying metadata. This comes at the cost of increased time needed to write calculated data to disk, rather than
manipulating it in main memory.

3.1 Retrieving Common Representations

The following methods of the XRDMap class can be used to retrieve a variety of packaged data.

• XRDMap.diffractogram: Get bulk-averaged diffraction data from all positions.

• XRDMap.get_diffractogram: Get the diffraction data for a single position.

3.2 Accessing the XRD Data Store and HDF File

It is possible to interact with the data as numerical arrays. The XRDStore class provides an interface for accessing
the defined datasets. It can be retrieved throught the XRDMap().store() method, or instantiated directly.

Warning: The XRDStore class should be used as a context manager whenever possible. Failure to close the
underlying HDF5 file, especially if using a writeable mode, is likely to lead to file corruption.

xmap = XRDMap(...)
with xmap.store() as store:

Is = store.intensities

5

scimap Documentation, Release 0.2

In the above example, store.intensities gives the intensity (photon counts) for each mapping position. The
result will be an m x n array where m is the number of mapping positions and n is the number of angles/scattering
vectors.

6 Chapter 3. Accessing the Underlying Data

CHAPTER 4

Refinement

Analyzing XRD mapping data requires some sort of refinement on each mapping position. To accomplish this,
the scimap provides the scimap.xrd_map.refine_mapping_data() method. Once refined, the results are
stored in the HDF5 file and can be plotting using scimap.xrd_map.plot_map(). Different approaches are
activated using the backend parameter. Many of the options, however, are unfinished or imperfect:

4.1 Fullprof

Warning: This backend is functional but fragile.

This backend requires that FullProf refinement be installed and available. The environmental variable $FULLPROF
should point to the installation directory.

mymap = scimap.XRDMap(...)
mymap.refine_mapping_data(backend="fullprof")

FullProf refinement creates temporary files that are cleaned up upon successful refinement; if refinement fails, these
files will be left behind for troubleshooting.

4.2 GSAS-II

Error: This backend is not functional. GSAS-II is under active development and if an API for Pawley refinement
becomes available, this backend may be updated.

7

https://www.ill.eu/sites/fullprof/

scimap Documentation, Release 0.2

4.3 Pawley

Warning: This backend is incomplete. Us at your own risk.

This backend is an implementation of simple Pawley refinement in python.

4.4 Custom-Backends

If none of the available backends suit your needs, a custom backend may be provided. The backend should be a
subclass of scimap.base_refinement.BaseRefinement. The predict() method should return the pre-
dicted intensities based on 2𝜃 values, and a number of methods should be overridden that accept 2𝜃 values and return
refined parameters:

• goodness_of_fit()

• background()

• cell_params()

• scale_factor()

• broadenings()

• phase_fractions()

Sub-class the base refinement
class CustomRefinement(scimap.BaseRefinement):

def phase_fractions(self, two_theta, intensities):
Do some calculations here
...

Override the other methods here
...

Now do the refinement
mymap = scimap.XRDMap(...)
mymap.refine_mapping_data(backend=CustomRefinement)

8 Chapter 4. Refinement

CHAPTER 5

Materials

Having a proper understanding of the material structure being studied is key to extracting usable information to map.
The scimap.XRDMap() class accepts a Phases=[] argument, which is a list of scimap.Phase subclasses.
The modules scimap.lmo and scimap.nca include pre-defined phases for LiMn2O4 and LiNi0.8Co0.15Al0.05O2
respectively. Unless you happen to be working with these materials, you will likely need to define some classes in
order to perform a thorough analysis.

from scimap import Phase, TetragonalUnitCell, XRDMap

Create a new class for our material
class Unobtainium(Phase):

unit_cell = TetragonalUnitCell()
Define a list of hkl planes that define this strcture
reflection_list = [

Reflection('000', qrange=(2.75, 2.82)),
]

Now use our new class to analyze mapping data
mymap = XRDMap(Phases=[Unobtainium])

Notice that the Unobtainium class is not instantiated before being passed to XRDMap. This is because each mapping
position gets a new phase object that can be refined.

The reflection_list attribute describes the crystallographic reflection planes for this crystal system. Each entry in this
list is a Reflection object. The first argument is a string with the hkl indices. Additionally, a qrange argument (2-tuple)
should be given that gives the scattering vector (q) limits. Q can be calculated from 2𝜃 values at a given wavelength 𝜆:

𝑞 =
4𝜋

𝜆
𝑠𝑖𝑛

(︁2𝜃
2

)︁
As a shortcut, the function scimap.twotheta_to_q can also be used.

9

scimap Documentation, Release 0.2

10 Chapter 5. Materials

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

11

	Introduction & Installation
	Motivation
	Installation

	Instrumentation and Beamline Support
	Bruker GADDS Diffractometers
	Bruker DaVinci Diffractometers
	APS Beamline 34-ID-E

	Accessing the Underlying Data
	Retrieving Common Representations
	Accessing the XRD Data Store and HDF File

	Refinement
	Fullprof
	GSAS-II
	Pawley
	Custom-Backends

	Materials
	Indices and tables

